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1. Introduction and Summary

The failure rate function h is an important parameter in re-

liability and biometry. Estimates of h using weighting functions or

* "kernels" are quite common in the literature [see Rice and Rosenblatt

(1975) and related references]. The kernels that have been considered

so far are nonnegative and absolutely integrale in (-,-). (Kernels

satisfying this latter condition are known as L1 kernels.) In Sing-

purwalla and Wong (1980)--abbreviated as SW(1980)--we have shown that

the mean square error (MSE) of a kernel estimator of h using an

L1  kernel restricted to be nonnegative has a rate of convergence of at

most O(n_4/) ,* regardless of the smoothness of h ; where n is the

, sample size. If the nonnegativity condition of an L1 kernel is re-

laxed, and if h is m times continuously differentiable, then (for

m> 2), the rate of convergence of the MSE (can be improved and) is at

* *The notation "a = O(bn)" denotes the fact that Ian/b is

bounded in the limit.
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2m

most O(n 2m+) A method for producing kernel estimators having the

above property is the generalized jackknife of Gray and Schucany (1972).

Specifically, if we use the generalized jackknife on two kernel estima-

tors of h , with each estimator being based upon a nonnegative L1 ker-

nel, then this is equivalent to directly producing a kernel estimator of

h using an L1 kernel which takes both positive and negative values.

If we continue to apply the generalized jackknife method, then the rate

of convergence of the MSE of the resulting estimator can be brought as

-1
close to n as is desired. This, plus the alternating behavior of

the kernel discussed in Example 5.3 of SW(1980), has prompted us to con-

L1
jecture that an indefinite jackknifing of estimators based on L ker-

nels is equivalent to obtaining a kernel estimator using an alternating

(wave-like) non L kernel.

Motivated by the above considerations, out goal in this paper is

to obtain an estimator of h whose MSE converges to 0 faster than

2m

0(n 2m+l) for any finite m >0 , and preferably is closer to the ideal
~-1

n . We achieve this goal by considering a kernel estimator of h

based on the "sinc" kernel, illustrated in Figure 3.1. In Section 3 we

show that the sinc kernel, which is not an L kernel and may not be a
1

limiting case of jackknifing an L kernel either, arises naturally

when we estimate h via an estimate of the Fourier transform of h

The sinc kernel estimator of h is also referred to as the "Fourier

integral estimate."

* In Section 4 we show that the sinc kernel estimators of h are

2, asymptotically unbiased and consistent. In Section 5, we discuss the

rates of convergence of the bias and the MSE of these estimators. We

show that for certain classes of failure rate functions, the sinc kernel

estimators have a faster rate of convergence of the MSE than the

1
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corresponding L kernel estimators. These rates are of the order

1

(log n/n) or (n2 p - ) , depending upon whether the Fourier transform

of h decreases "exponentially" or "algebraically with degree p" (see

Definitions 5.1 and 5.2). Clearly, when p > m+l , both the above

2m
2m+lrates are faster than n However, they are not equal to the ideal

-i
rate of n , which we know can be attained, if possible, by jackknif-

ing indefinitely.

Sinc kernels have been considered before in the literature on

density estimation. Davis (1975) has shown that under certain condi-

tions density estimates based on the sinc kernels have a faster rate of

convergence of the MSE than those based on L kernels. Thus, the re-

sults of our paper complement those of Davis. An explanation of why the

sinc kernel gives us faster rates of convergence of the MSE lies in the

effect of jackknifing on kernels. Typically, the generalized jackknife

method is undertaken to improve upon the rate of convergence of the bias

and the MSE, and an indefinite jackknifing using L1 kernels leads us

to a non L kernel, which alternates between positive and negative

values, like the sinc function.

2. Preliminaries: Kernel Estimates

*Suppose that the time to failure of a device is a nonnegative

random variable X , with an absolutely continuous distribution function

F and a probability density function f The failure rate at x,

h(xO) , for F(xO) # 1 , is defined as

f(xh(x o  0
0  1 - F(xO)

note that h(x) 0 , for all x > 0

-3-
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Given an ordered sample of n lifetimes from F , say X(1),

X(n) , a kernel estimate of h(x0) , h(n,xo) , is defined as

n(n)

h(n,xO) = 1 (2.1)j n-j+l b(n) Kk (b (n), 21

where the kernel K is a bounded, symmetric function of integral one;

the scale parameter b(n) is a nonnegative decreasing function of n

such that

(i) lim b(n) = 0 , and
n-4_

(2.2)
(ii) lim n b(n) =

n-),o

A motivation for considering the kernel estimates of the failure

rate are given in Watson and Leadbetter (1964a). Some of the commonly

used kernels are the rectangular, the triangular, the Weierstrass, the

=1 / sin(x/2) 2
Piccard, the Cauchy, and the kernel K(x) = I (x/2)) Among

* other things, these kernels have the following two features which are of

interest;

(i) they are nonnegative, and

(ii) they are absolutely integrable in (-cc) ; kernels

which satisfy this property are called L kernels.

Watson and Leadbetter (1964b) have shown that for a certain class

1
of distribution functions, estimates based on L kernels are asymp-

totically unbiased and consistent, at every point x at which h is

continuous and F(x)< I . The optimal rates of convergence of the bias

• I and the MSE of h(n,x0 ) have been discussed by SW(1980).

3. Kernel Estimates Based on the Fourier Integral

We shall confinc our attention to the class of failure rate func-

tions h for which the Fourier transform 4h exists; that is

-4-
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felXUf h(u)du <

Let x be a point of continuity of h(x) ,and assuming that
1

0C L (i.e., f14,(x)idx<w the following inversion formula gives

us the basis for considering the Fourier integral estimate of the

failure rate:

h(x ) =--e (31
0 1h f e . (3.1)

Let F be the modified samplec distribution function; that is,
n

the usual sample distribution function multiplied by n/(n+l) An es-

timate of h(x) at x =X ,h (x) ,is
0I n

f (x) dF n(x)1

hnx) - -F (x) F 1- (x) n-j+l
n n

Let 4) be the Fourier transform of h ;that is,

n ixX

0 (x) = fe "X11 h (u)du Y 1 e 0) (3.2)
hnn j1T7 LJ+]

To obtain from (3.1) an estimate of h(x 0) , we replace 4) h by

4) , and to assure finiteness of the integral, we take it between the
n

finie lmits (n) (11) ,where the b(n) satisfy (2.2), we ob-

tain the Fourier integral estimator of h(x), h(n,x 0) ,where

1 b(n) -ix0 u
h(n,x0) -e 4) h M u(3.3)

b(n)

Replacing Ph by Its expression, (3.2), we have
n

-5-
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h(n,x0)=n 1) (~ 0) du
0 2n _1__ j~l

b (n)

1

1 ~ 1 b (n) 1CoS[U(Xj x )l + i siflu(X )Ildu

b (n)

n sin

n) /

(n-j+-j1)b~n ) ) 03/i

ni x

whiere SWx is the "sine" function, illustrated in Figure 3.1.

LIT

Figure 3.1-The sine function.

-6-
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Thus we see that the Fourier integral estimate of the failure

rate is indeed a kernel estimate, with the sinc function S as the

kernel.

L1
Note that the kernel S is not an L kernel, but that it is

symmetric, bounded, and of integral one; also fS 2(x)dx =1*

4. Asymptotic Unbiasedness and Consistency

Since S is not an L kernel, the asymptotic unbiasedness and

consistency of h(n,x0 ) has to be established first. Once this is done,

we will be able to discuss the rates of convergence of the bias and the

MSE.

Theorem 4.1: Let X( ) < X < ... < X(n ) be an ordered sample of

lifetimes from an absolutely continuous distribution function F

Suppose that:

i) the failure rate function Ii is absolutely inte-

grable*;

(ii) h satisfies Dirichlet's conditions in any finite

interval; that is, h has at most a finite number

of finite discontinuities, and no infinite discon-

tinuities in any finite interval, and, furthermore,

h has only a finite number of maxima and minima

in any finite interval;

(iii) h(x) is continuous at x0

(iv) F(x0) < 1 ; and

*When h is absolutely integrable, F is a suzbdistrihuton
function [Chung (1974, p. 84)].

17
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(v) F is such that for any fixed x', and every fixed

X>0 , there exists a GA O >0 such that

(-F(x), x - X' =

for all sufficiently large n and for all

Ix-x' I > A

then

0 rrX -xh(n,xO) = " in( b(n)

jln-j+1 (~j=1 0)-Xo

is an asymptotically unbiased and consistent estimator of h(xo)

Furthermore, an asymptotic expression for the expected value

of h(nx 0 ) is*

E[h(nx f b--nu-0 h(u)du , (4.1)1 [F('0) ify  u- xo

and the variance Varth(n,x0 )] converges to zero at the rate nbln)

Proof:

E[h(n,x ]

n lU- f (u)du

tu-x 0
j 1 n- ~Tx) -~ jl) n3

*Te notation "a b " denotes the fact that the ratio ofI n n

a to b has limit one.
n n

.. ., . , , .... . -.., ., * ,
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- U-Xo ) I (A) (F(u))j 1F(u))nd

- 7T h (0h u)[l- Fn(u)]du

1 f__in_-- _ h(u)du - - f bin ) h(u)Fn(u)du . (4.2)
u- x0 I u- 0

Consider the limit of the first term on the right-hand side of

(4.2):

1 __ h01 du if
I im sin b--n/ h(u)du = lir 1 f h(u)du
n-o" 7 UX 0  b (n) -0 T  uX 0

= ]im f sin(A(u-x0 )] h(u)du
,ou - x 0

= h(x0 ) (4.3)

The last equality follows by the Fourier integral formula [see Titch-

march (1962, pp. 3, 25) or Smirnov (1964, pp. 462-472)].

Next we show that the second term on the right-hand side of (4.2)

tends to zero geometrically, as n-)- . Since F(x) < I , we can choose

a A> 0 so that F(x+) < 1 , and such that h(u) is bounded in

IL-XoI<A . We split the interval of integration (-ooo) into two

parts, Ju-xo0j<A and ju-xo >X , and note that

sin 0uxO

f 1 COO h(u)F n(u)du < (const)F n(x+X) 0 , (4.4)u_x ° .O , u- x0 0

as n-)°W , and

-9-
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/u-x\ tu-x Olu-l . 0 o

1i (b (n'1 n( * - 1 b(n) f (u) n
f h(u)F(u)du f 1 - F (u)du

Iu-x >x 71 u-X 0  ixo u-x 0  1-F(u)

< G FndF = 0-- 0, (4.5)

as n 00

From (4.2) through (4.5), we conclude that

lir E[h(n,x 0 )] = h(x O)
n-*0

Thus, the estimator h(n,xO) is asymptotically unbiased and, for a

given n,

(i -x
Eh(nx fI1 l b(n-) h(u)du0l~,X) 7T f 11t - x 0

To prove consistency of h(n,x 0 ) , we follow the detailed steps

'given in Watson and Leadbetter (1964b). From Equation (3.2) of Watson

and Leadbetter, we write

Var fh(n,x O)

2 (u-x 0f___IS 2-u-A h(u) I (F(u)) dF(u)
b b (n) \b(n)j n

2(n (n) bn

2.fbn)\b(n) ) \b(n) /11-F (u) F n(v)
+ O<u<v I-F(v) 1 - )- Fn(v) (4.6)

SFn-(v)-F(u) dF(u)dF(v)

where I (F) = fd-F (V+B)n-F B
n 0 B

If we multiply both sides of (4.6) by n/(% , where

-10
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a~ ~ . S2 (u~xO%)d(n) =b)) du

and take the limit as n->- , we note that the first term on the right-

hand side of (4.6) equals h(x0)/(J-F(x 0)) whereas the second term is

0 . Thus

ln 1- Var[h(n,x)] = h(x)

ira 0 1- F(x0)n-)c  n

or that

OL h(x 0)
Var[h(nx 0)] n - (x0)0 n1- F(x 0 )

Since

an  f I 2(u-xo d
b2(n) b(n u = b(n)

implies a /n (I /)(i/nb(n)) - 0 , by (2.2), and thus Var[h(n,xo)] -0 0

Thus, h(n,xO) is a consistent estimator of h(x0) , and the variance of

h(n,x0) goes to zero at the rate l/nb(n) . 1/.

4.1 An alternate expression for the bias

We shall find it useful to express the asymptotic bias of h(n,x0)

in terms of the Fourier transform ch of h . We first note that if

*, w(x) {= :,x~

* then the inverse Fourier transform of w(x) is

I -xu1 ixu sin x
- f e-iXU w(u)du = -f e- du = x

That is,

S(x) e ixu w(n)du (4.7)

- 11 -
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In view of the above, the Fourier transform of S(x) is w(x) ; that is

1 IxI<l

f eixu S(u)du f eiXU sin u du = , IxI >1fu

Recall, from (4.1), that

1 f h(u) S du
E~hanXo) ] b(n)S \b(n)/

f f h(u) f e1 _ w(v)dv du , by (4.7)
b(n) 1 2wr

= 1 1 -i(x0 -u) t

b(n) f  h(u) - e w(b(n)t) b(n)dt du

1 -ix0tiu
I i f e w(b(n)t) f eiu t h(u) du dt27T

1 2* f e w(b(n)t) 4h(t) dt
27T

The asymptotic bias of h(n,x0 ) is therefore given by

Rj~h~f1 1-ixot
Bias[hi(nxO ~-L f C e w(tb(n)) Dh(t) dt - h(x O )

1 -Lx0 t 1 -ix0 t

f f e w(tb(n)) 4h(t) dt- f e (Ph(t) dt

-i0t

f ef ei" t {w(tb(n))- 1} Dh(t) dt

ix 0 t

2 f 1b e h(t) dt (4.8)
. 2Tf Itl >b(n---)-

5. Rates of Convergence of the Bias and the MSE

We are able to investigate and optimize the rates of convergence

of the bias and the MSE of h(n,xO ) when the Fourier transform of the

failure rate decreases exponentially or algebraically.

- 12-

' "" ' ' " i" i Y 
"

' " " '1 i
•

" " . -" " " . ".. .. .. .



T-416

Definition 5.1 [Parzen (1958)): A function g(x) is said to decrease

exponentially with degree 0 < r< 2 , and coefficient P > 0 , if

g(x)I ! Ae-PIx lr  for some constant A>0 , (5.1)

and

lim [ 1 + exp(2pxr) jg(xu),2] du = 0 (5.2)
x

4 000

We shall first need to prove the following lemmas.

Lemma 5.1:

1

ebr (n) -tr
lira b(n) e e dt = 0 , (r>O) (5.3)

b(n)

Proof: The right-hand side of the above equation, when X = l/b(n) , is

OD e-t dt r
dl e -m r  = lim 1 0. I/

n-)- Xe XX)C e X e- X X- X

Lemma 5.2: If the Fourier transform of h , h , decreases exponen-

tially with degree r and coefficient p , then, for sufficiently

large n,

00 r
Bias[l(n,xO)]I < 1 Ae-pt dt (5.4)

b(n)

Proof: From (4.8), we note that for n large

1 (h -iXot

1[hn'xo) 1 e 0 h(t)dtBias~ ~~ ~I I "'"t > b(n)

However,

13
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- x e 0  (t)dt < 1 I(t) Idt
> h(n) I b (n)

_-- t =dt f AeP dt
27ri 1 7F It~ 1 t

ItI >b(n) >b(n)

the statement of the lemma now follows. 1/.

Lemma 5.3: Suppose that the Fourier transform 0h of h decreases ex-

ponentially with degree r and coefficient p . Then

lim b(n) ep /b r (n) IBias[h(n,x0 )]I = 0 (5.5)
n-

thus

Bias[h(n,x)] o(b-l(n) e-Pf(n)) .

Proof: The result follows if we make a change of variable u = Ptr

and use Lemmas 5.1 and 5.2. II.
I

The following theorem establishes the choice of b(n) which

enables us to obtain the optimal rate of convergence of the mean square

error of h(n,x0) , when Oh decreases exponentially.

Theorem 5.4: Suppose that the Fourier transform 0 h of the unknown

failure rate h exists and decreases exponentially with degree 0< r< 2

and coefficient p>0 . Then, if b(n) in the Fourier integral estimat-

* or of h , h(n,x0), given by (3.4), is chosen such that b(n)

O(log n/2p)-(l/r) the optimal rate of convergence of the MSE of

h(n,x0) is of the order log n/n

*The notation "a = o(b n)" denotes the fact that the ratio of
n n

a to b has limit 0.

- 14 -
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Proof: From Lemma 5.3, we note that Bias 2 [(n,)] decreases at least

as fast as 1/b 2(n) exp(-2p/b r(n)) . From Theorem 4.1, we have the re-

sult that the variance of h(n,x0) goes to zero at the rate (nb(n))-1

The statement of the theorem now follows from Davis (1974). 1/.

We shall now consider the class of failure rate functions h

whose Fourier transforms 'h decrease algebraically.

Definition 5.2 [Parzen (1958)]: A function g(x) is said to decrease

algebraically with degree p> 0 , if

lim Ixjp [g(x)l = a" > 0 , (5.6)

for some a>0

Lemma 5.5: Suppost, that the Fourier transform 4h of h decreases al-

gebraically with &kgree p >1 . Then

lii b1 "P(n) / 1 1i I h(t) Idt = 2(x(p-l)- " (5.7)

It I > b(n)

Proof: From (5.6), we note that for c>0 , there exists an M>0 such

that

al -C < Itlp Ih (t)l < a + ,

whenever Itl > M . Equivalently,

I t -- (O - ) < 14,(t) I < I t I p(a" +C),

.... for It >" M• Integrating both sides of the above for Itl > I/b(n)
we get

7 2(ah- c)(p-) - 1 bP-1 (n) < 1 lih(t) Idt
I ti >b(n)

< 2(al +c)(p-1) -  b P-(n) , (tI>M

- 15-
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Note that when n is sufficiently large, I/b(n) > i , and

Itl > l/b(n) implies that ItI >M . Thus, for sufficiently large n

1 1- 1- (-2 (o- (P- 1)- < bl-P(n) 1 14)h (t) Idt < 2(x + r) (P-1)-I

Itj >_(I b(n)

We therefore have

lim bl-P(n) h(t) Id 2x (1)

, t " "

Lemma 5.6: Suppose that the Fourier transform Oh of h decreases al-

gebraically with degree p > . Then the bias of h(n,x )

Bias[h(n,x0)] , satisfies

lin bl-P(n) jBias[h(n,x0 )]I < a1 (p-l (5.8)
n-

thus the bias decreases at the rate bP-l(n)

Proof: From (4.8), we have

bl-P(n) IBias[h(n'x0)I = bl-(n) 1 eIt I > n--

< basjp 2x I I h(t) dt
I t I >b(n)

Using (5.7), we obtain

lim bl-P(n) IBias[h(n,xO))I <-: 2cx2(p-i) = a (p-1) • 1/
n-*w 

27

The following theorem is analogous to Theorem 5.4.

I
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Theorem 5.7: Suppose that the Fourier transform Dh of the unknown

failure rate h exists and decreases algebraically with degree p> I

Then, if b(n) in the Fourier integral estimator of h • h(n,xO)

given by (3.4), is chosen such that b(n) = O(n- / (2p - ) , the optimal

rate of convergence of the MSE of h(n,x0) is of the order n1 IC2p- l)-

Proof: From Lemma 5.6, we note that Bias [h(n,xO)] decreases at the

rate of b 2 (p-1)(n) , and from Theorem 4.1 the variance of h(n,x0 ) goes

to zero at the rate (nb(n)) Thus, a choice of b(n) = O(n -l/(2p -1))

-1+ I/ (2p-1)gives an optimal rate of convergence of MSE of the order n

/.

6. A Comparison of the Rates of
Convergence of the MSE's

We can now compare the optimal rates of convergence of the MSE's

for estimates of h based on L kernels and the sinc function kernel

L1
which is not an L kernel.

In general, for L kernels which belong to the class A

(i.e., an L1  kernel K which satisfies the condition that

fxjK(x)dx = 0 , for j=l,2, ... ,m-l), and if h(m ) exicts (that is,

if h is m times continuously differentiable), then we have shown

in SW(1980) that the optimal rate of convergence of the MSE of the ker-

nel estimator of h is of the order n- 2m/( 2m + l )

In Theorem 5.4 of this paper, we have shown that if the Fourier

transform of h , , decreases exponentially with degree r and co-

efficient p , then the optimal rate of convergence of the MSE of the

Fourier integral estimator of h is of the order log n/n . Since

.4

- 17 -
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l log n/n lm log n 0

n-M -2m/(2m+l) n li4 -l/(2m+l) =

for all m>0 , the following theorem follows.

Theorem 6.1: For the class of failure rate functions whose Fourier

transform exists, and decreases exponentially, the Fourier integral

estimate (based on the sinc function) is better in terms of the rate of

convergence of the MSE than a kernel estimate based on any L kernel.

When the Fourier transform of h , 4h , decreases algebraically,

then in Theorem 5.7 we have shown that the optimal rate of convergence

of the MSE of the Fourier integral estimator of h is of the order

l/(2p-l)- 1
n . Since

lim n (2p-llim n/(2p-l)- i/(2m+l) _
nim -2m/(2m+l) = nn-' n n

if p> m+l , the following theorem holds.

Theorem 6.2: For the class of failure rate functions whose Fourier

transform exists and decreases algebraically with degree p , the

Fourier integral estimate (based on the sinc function) is better in

terms of the MSE than a kernal estimate based on any L kernel be-

longing to the class A , if p>m+lm

6.1 Examples of Fourier transforms which decrease
exponentially and algebraically

(i) Suppose that the failure rate function h is of the form

1h(t) 1 2t -3/2
= -- e t , t>O.

The Fourier transform of h , h , is

4 h(t) = expf-1tl1 (1+i

-18-
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Since JIh (,)I e It 11h decreases exponentially with A= 1

p= 1 , and r= !I . By Theorem 6.1, for this h the Fourier integral

estimate is better than kernel estimates based on L kernels.

(ii) Suppose that the failure rate function h is of the form

1 Y 2 21
h(t) - I t2  e 2

2 2r(y/2)

t>0 , y a positive integer. For y>2 , this failure rate function

first increases and then decreases. The Fourier transform of h

h is

4h(t) = (1- 2it) y / 2

and

Ih(t)t = (1 + 4 t2)-Y/4

hhimplying that (Vh decreases algebraically with degree y/2 . By

Theorem 6.2, for this h the Fourier integral estimate of h is better

than kernel estimates based on L kernels which belong to A , when-

ever 'Y > 2(m+l)

(iii) Suppose that h is of the form

h(t) = Xe- t , t>O , X>0

that is, the failure rate is an exponential function. The Fourier

transform of h , 0h is

h~ t ) = -it'

and

implying that (P decreases algebraically with degree 1. By Theorem

h

6.1, for this h the Fourier integral estimate is inferior to any ker-

L1
nel estimator based on an . kernel.

- 19 -
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7. Concluding Remarks

It is evident from Theorems 5.4 and 5.7 that one would consider

using the Fourier integral estimate of h only when one had some prior

knowledge about the general behavior of h . For example, if we know

a priori that the failure rate is an exponential function, then we would

use an L kernel rather than a sinc kernel to estimate h . In real

life, this kind of prior knowledge may be hard to come by; after all,

the practical problem is to estimate an unknown h . This, therefore,

poses a disadvantage of the sine kernel estimators of h .

Another disadvantage of the sine kernel estimator stems from the

fact that the sine function takes negative value for a substantial num-

ber of points in its domain. Thus, the sine function estimator of h

can be negative at some points, a result which is unacceptable to a

practitioner. One may argue that this is the price that must be paid

for obtaining an estimator which has good bias and MSE properties.

On the other hand, a Bayesian may view this as another situation wherein

unbiased estimation and MSE minimization lead us to unacceptable

answers. Efron (1978), in a delightfully written paper, discusses some

controversies in the foundations of statistics.

Our final remark pertains to an interpretation as to why the MSE

of the sinc kernel estimator of h has a faster rate of convergence

than those obtained via other kernels. In SW(1980), we observe that an

indefinite jackknifing of L kernel estimators of h is equivalent to

obtaining a kernei estimator of h using an alternating kernel that is

1 1
not L . The sine kernel, being not L and wavelike, can be viewed

as one that could be the consequence of an indefinite amount of jack-

knifing. Since the result of jackknifing is a reduction of the bias and

an improvement of the rate of convergence of the MSE [Miller (1978)],

the fast rates of convergence of the MSE follow.

- 20 -
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To cope with the expanding technology, our society must
he assured ot a continuing supply of rigorously trained
and educated engineers. The School 01 Engineering and
Applied Science i~ coml)letely committed to this ob-
jective.
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